thermochimica

acta
ELSEVIER Thermochimica Acta 262 (1995) 129-144

The effect of procedural variables and mechanical activation
on the thermal decomposition of calcite. An approach by
experimental design

G.N. Karagiannis, T.C. Vaimakis *, A.T. Sdoukos

University of Ioannina, Department of Chemistry, P.O. Box 1186, 45110 Ioannina, Greece
Received 30 September 1994; accepted 21 February 1995

Abstract

Second-order orthogonal experimental design has been used to examine the effect of mechan-
ical activation, mass sample, heating rate and molar fraction of carbon dioxide in the environ-
mental atmosphere on the thermal decomposition of calcite.

The mathematical model of the activation energy (E,) for various mechanisms was examined
by the Coats—Redfern equation using the best-fit procedure and the method of the shape of the
TG/DTG curves. The best-fit procedure gave the second-order reaction mechanism (F2) as the
predominant mechanism while the shape method gave the contacting area geometrical mech-
anism (R2) and the two-dimensional diffusion mechanism (D2) as the predominant mechanisms.

The mathematical models for the change of enthalpy (A H) and the temperature of the
maximum rate of decomposition (T, ) were found, but unfortunately only the T, model was of
significance.
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1. Introduction

In the last twenty years many thermoanalytical techniques have been widely used for
the study of the thermal decomposition of solids and the understanding of the
mechanisms which control these processes. Several techniques have been used to
analyse the thermogravimetric curves, the most common being the Coats—Redfern
method [1]. The overall kinetics of the thermal decomposition of solids is largely
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affected by procedural variables, i.e. external factors such as heating rate, particle size,
sample weight, linear velocity of purge gas, and the pressure and composition of the
atmosphere. Internal factors also have an effect on the decomposition process. The
most important ones are the energy of the substrates and products, the lattice defects,
the mobility of crystal lattice elements and the induced energy from size reduction
processes (mechanical activation). The latter can also represent an external factor, i.e.
the time of mechanical activation, and the charge and environment of grinding. It is
also very important to find a way of interpreting research data by a mathematical
model which can represent the effect on the internal and external factors. The statistical
design of experiments is a relevant technique which according to Murphy [ 27 has four
benefits: (a) it can give more information per experiment than unplanned approaches,
{b) an organized approach toward the collection and analysis of information, (c) an
assessment of information reliability in the light of experimental and analytical varia-
tions and (d) the capability of recognising interactions among experimental variables.
The thermal decompositions of calcite and calcium carbonate have been studied by
numerous authors under isothermal [3-7] and non-isothermal [3,7-14] conditions
and by constant rate thermal analysis [15]. The combination of various experimental
conditions has led to a very large range of kinetic parameter values.

In this paper, we report the effect of sample size, heating rate, partial pressure of
carbon dioxide, and time of mechanical activation on the thermal decomposition of
calcite, using a full second-order statistical experimental design, which usually provides
a good approximation of the true behaviour of a given system.

2. Experimental and results

A natural calcite, from the Epirus (Greece) area, was crushed to under 500 pum
particle size using a jaw crusher; 10 g of crushed calcite with 5 ml water were transferred
into a 250 ml capacity stainless-steel cylindrical bowl with 50 stainless steel balls of
10mm diameter and ground using a Fritzch pulverisette 5 planetary mill for the
necessary times (Table 1, factor z,).

Thermal analysis of ground calcite was carried out using a Chyo-TRDA,H derivato-
graph with simultaneous recording of temperature (T), thermogravimetry (TG), differ-
ential thermogravimetry (DTG) and differential thermal analysis (DTA). All the
analyses used a-Al,O; as a blank and the other variables were mass sample, heating
rate and carbon dioxide molar fraction in its mixture with nitrogen (Table 1, factors z,,
z, and z, respectively). The flow rate of CO,/N, mixtures for all the runs was
150 mlmin~"! at atmospheric pressure. Tables 1 and 2 show the experimental condi-
tions which reflect a statistical experimental design.

2.1. Experimental design

We used a second-order orthogonal factorial experimetal design [2, 16] to obtain the
geometrical portrait of response surfaces for the activation energy (E, ), the change of
enthalpy (A H) and the temperature at maximum rate decomposition (T,,,,) by means
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Table 1
The principal level and incremental changes in the factors

Factor Mechanical Mass/g Heating Molar
activation rate/(°Cmin ™) fraction of
time/min CO,

Natural scale/ zy/xq Z,/X, Z3/X5 Z4/X,

dimensionless
coordinate®

Basic level 90/0 100/0 5.93/0 0.5/0

Unit 30/1 50/1 2.96/1 0.2/1

Upper level 120/+1 150/ +1 89/+1 0.7/+1

Lower level 60/ —1 50/—1 297/—1 03/—1

Star arm

Upper level* 132.4/ 160/ 10.11/ 0.78/
+1414 +1414 +1.414 +1.414
Lower level ® 476/ —1.414 40/—1.414 1.74/—1.414 0.22/—1.414

“x,=(z,— z0)/Az,

of the estimated regression equation
P=bo+ Y bix;+ Y byxix;+ Y byxt n =n(n—1)2 (1)
1 1 1

term coefficients, i # j. The coefficients were calculated from the equation

where by, b;, b;;, and b;; are the free term, linear term, quadratic term and interaction
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The significance of the coefficients was tested on the basis of the Student t-test for
a level of p = 0.05 or 95% confidence and an error mean square (S?) which was found
from three repeated observations(B,, B, and B,, see Table 4, below) at the centre point
of the design ( j?) (here, for f=3 —1 =2 degrees of freedom, t = 4.30)

3
Yy =)
§!=—F— (3)

To test the estimated model, i.e. the equation after eliminating insignificant coefhi-
cients, we used Fisher’s variance ratio (F-test)

F=S82/s? @)
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where S? is the residual mean square
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where [ is the number of significant coefficients.
Table 1 shows the centre point of design or basic level (z9, 29, z3 and 29, z° =

(Zimax + Zimia)/2), the change interval or unit on the axis(Az, Az,, Azyand Az,,Az? =

(Z;max T Zimin)/2), the upper and lower levels (z; ., and z;,;,) and also the definition of

the factors. Table 2 shows the matrix of a second-order orthogonal design for k = 4.
The number of experiments was 25 and the star arm was 1.414.

2.2. Kinetic analysis

The kinetic analyses of the thermal decomposition of calcite was studied using the
modified Coats—Redfern method, based on Eq. (1), for various mechanisms [17] as
listed in Table 3

ZR 2RT E
ln(g(a)/TZ):ln[(Exl K, ﬂ_Rfr (6)

where g(«) (some authors use the symbol f(a)) is the integral of the inverse function
which describes the dependence of da/dt on o, « is the reacted molar fraction, t the time,

Table 3
Classification of solid-state rate expressions

Symbol g(®)

Acceleratory o—time curves

Pn Power law (n=1,2,3,4) ol
Sigmoid a—time curves
An Avrami-Erofe’ev [—In(1—2)]'"

(Random nucleation n=2,3,4)
Deceleration a—time curves based on geometrical models

R2 Contracting area 1—(1—o)'?

R3 Contracting volume 1 —(1—a)f3

Deceleration a—time curves based on diffusion mechanisms

D1 One-dimensional o?

D2 Two-dimensional (1—a)In(l — o) + o

D3 Three-dimensional, spherical symmetry; [1—(1 —a)'/*]?
Jander equation

D4 Three-dimensional, spherical symmetry; (1 —2a/3) — (1 — «)?3

Ginstling—Brounshtein equation
Deceleration a—time curves based on order of reaction
F1 First order —In(l —a)
F2 Second order 1/(1 —a)
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T the temperature, Z the pre-exponential factor, R the gas constant, E, the activation
energy, and f the heating rate. When In(g(a)/T?) is plotted against 1/T, straight lines
can be drawn by the method of least squares, from which E,, Z and the correlation
coefficient are calculated. For each mechanism, the mean value of the correlation
coefficients of all runs is accepted as the mean correlation coefficient (r_ ). The random
nucleation mechanism (A2, A3, A4) which yields the highest correlation coefficients is
accepted as the predominant nucleation mechanism. Another way to choose the
predominant mechanism for each run, according to Dollimore and coworkers [ 13, 17—
19], is the shape of the TG/DTG curves. From (Fig. 1} the decomposed fraction at
maximum rate decomposition («_,, ), the DTG peak width at half height or half width
(HiT-LoT), and the initial or onset temperature (T;) and final temperature (T;) of TG
curve, we found the predominant mechanism according to Fig. 2.
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Fig. 1. TG, DTG and DTA curves of calcite using basic level conditions (see Table 1), and the schematic
representation of the determination of «,,,,, and the half width of the DTG peak.
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Experimental TG/DTG Curve
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Fig. 2. Flow chart showing procedures in recognising the kinetic equations [17].

50
-
150 100

Fig. 3. The response surface of the F2 model for activation energy ( y axis). The effect of activation time (z,
a axis) and mass sample (z,, b axis) at a heating rate of 5.93°C min~! and CO, molar fraction 0.5.
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The change of enthalpy for the calcite decomposition was determined from the peak
area of the DTA curves by the equation

_KsA
= B

where K is the derivatograph constant, s is the used sensitivity for the DTA measure-
ments, 4 the peak area and m the mass of the sample.

AH (7

3. Discussion

The highest mean correlation coefficients of the activation energy models for
different mechanism (Table 4) are those of the second-order reaction model (F2)
(rn =0.9950). From Table 5, the F-test indicates that only the F2 mechanism model is
significant at 95% confidence. The shape method gave a relatively low value of the

Fig. 4. The response surface of the F2 model for activation energy ( y axis). The effect of activation time (z,,
a axis ) and heating rate (z5, ¢ axis) with a sample mass of 100 mg and CO, molar fraction 0.5.
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correlation coefficient (r,, = 0.9737) and an unexpected insignificance by the F-test. Our
individual experiments on calcite decomposition without mechanical activation
showed a good agreement between these two methods [20]. So the predominant
mechanism for calcite decomposition under these conditions is the second-order
reaction. The shape of the TG/DTG curves gave the predominant mechanism as R2 for
13 runs and D2 for 8 runs. Dollimore et al. [13] found that at a heating rate of
10°Cmin~ !, the predominant mechanisms of limestone decomposition, as predicted
by the shape method, were R3 and D3. Under isothermal conditions, Maciejewski and
Reller [7] found that in carbon dioxide atmosphere the mechanisms were F1 and A2,
while in nitrogen atmosphere it was P1. A change in the decomposition mechanism
following mechanical activation has also been observed for magnesite [21] and calcite
[22].

The F2 mechanism model (Table 5) predicts that all the linear terms are significant.
The significant quadratic terms are those of the mass of sample (b, ), the rate of heating
(b5) and the molar fraction of CO, (b, ), while the significant interaction terms are b, b,
and b, b,. The influence of the activation time (z, ) on the activation energy is linear, as
only the linear term is significant. The same linear influence is also apparent in Figs. 3-5
where the parallels at the activation time axis of the third response-surface illustration
of model F2 are straight lines. Generally the activation energy is increased with
decreasing activation time. The influence of three other factors on the activation energy
is illustrated with a parabolic shape. Figs. 3, 6 and 7 show that the influence of sample

Fig. 5. The response surface of the F2 model for activation energy ( y axis). The effect of activation time (z,,
a axis) and CO, molar fraction (z, z axis) with a sample mass of 100 mg and a heating rate of 5.93°Cmin " '.
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Fig. 6. The response surface of the F2 model for activation energy ( y axis). The effect of sample mass (z,,
b axis) and heating rate (z;, c axis) at an activation time of 90 min and CO, molar fraction 0.5.
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Fig. 7. The response surface of the F2 model for activation energy ( y axis). The effect of sample mass (z,,
b axis) and CO, molar fraction (z,, z axis) at an activation time of 90 min and a heating rate of 5.93°Cmin .
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mass on activation energy indicates a minimum of about 170 mg. Gallagher and
Johnson [3] found that between about 1 and 17 mg, the activation energy of calcite
decomposition decreased with increasing mass sample. The same effect is observed on
the decomposition activation energy of CaC,0,-H,0 [23], [Cu(en),(H,0),]C,0,
[24] and NH,NO, [25]. The influence of the heating rate on the activation energy is
the same as sample mass (Figs. 4,6 and 8), with a minimum of about 10°C min '
Ninan and coworkers [ 23, 24] found that if the heating rate is increased, the decompo-
sition activation energy is decreased. The inverse behaviour is shown in Figs. 5, 7 and
8 for the carbon dioxide molar fraction, with a maximum value of about 0.75. The
negative signs of the b, b, coefficient term indicate an antagonistic influence between
the z, and z, factors. Figs. 7 and 8 illustrate this antagonistic interaction by saddle
response-surfaces. Surprisingly high values of E, and T, ,, were obtained in all the runs,
explained by the effect of the CO,. High values up to 900 kcal mol ~! have been found
by others [9, 10]. In Fig. 6, for pure nitrogen atmosphere (molar fraction of CO,, zero)
and without mechanical activation (activation time, zero), the activation energy is
about 200 kcal mol ! which is approx. four times more than the literature values. This
could be explained by the chosen predominant mechanism. Under those conditions,
the probable predominant mechanism, according to Ref. [ 7], was the P1 mechanism,
for which (see Table 4) the values of E, are about a quarter of those of the F2
mechanism.

Fig. 8. The response surface of the F2 model for activation energy ( y axis). The effect of heating rate (z,,
¢ axis) and CO, molar fraction (z,, z axis) at an activation time of 90 min and a sample mass of 100 mg.
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The A H model, as predicted by the F-test (Table 5), was not significant at the 95%
confidence level.

The T,,,, model was significant at the 95% confidence level and indicated that the
significant terms were those of the F2 mechanism model plus the b, b,, b, b, b, b, and
b,yb, interaction terms. The CO, molar fraction (z,) action was antagonistic to the
other parameters, and the activation time (z, ) with the mass sample (z, ). The effects of
theindividual z,, zy and z, parameters were not antagonistic, i.e. by increasing each one
of these, the peak temperature of the DTG curves of the calcite decomposition
increased [3, 12]. This change in behaviour could be attributed to the influence of the
mechanical activation.

4. Conclusion

The effect of the procedural variables, i.e. mass sample, heating rate and molar
fraction of carbon dioxide, on the activation energy and the temperature of the
maximum rate of decomposition, as indicated by the second-order factorial experi-
ment, was illustrated by a parabolic shape, while the effect of the mechanical activation
time was linear. In particular, for the activation energy, the mass sample and the
heating rate showed parabola with response surfaces opening upwards, while the CO,
molar fraction parabola showed downward response surfaces. Accordingly, the results
of the best-fit method for various mechanisms for the Coats—Redfern equation and
statistical control by the F-test suggested that the predominant mechanism is the
second-order reaction (F2). Therefore, the experimental design was a useful means
under complex conditions to choose and explain the predominant mechanism of the
decomposition of solids.
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